CO₄

L3

6M

Reg. No:		1	= (0)	ng . d	t to the	foe co	basta	

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations March-2023

	B.Tech II Year I Semester Regular & Supplementary Examinations I	March-2	023	
	NUMERICAL METHODS AND TRANSFORMS			
	(Electronics and Communication Engineering)			
	Time: 3 hours	Max. Marks: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1		CO2	L3	6M
	b Apply Newton's forward interpolation formula and the given table of values	CO1	L3	6M
	x 1.1 1.3 1.5 1.7 1.9			
	f(x) 0.21 0.69 1.25 1.89 2.61			
	Obtain the value of $f(x)$ when $x=1.4$.			
	OR			
2	a Estimate a real root of the equation $xe^x - \cos x = 0$ by using Newton-Raphson method.	CO1	L4	6M
	b Use Newton's backward interpolation formula to find f(32) given	CO1	L3	6M
	f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794.			
3		CO3	L3	6M
5	a Solve by Euler's method the equation $y' = y^2 + x$, $y(0)=1$ for $y(0.1)$ and $y(0.2)$.	GOS	. LiO	OIVI
b Using Runge–Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xy$,			L3	6M
	y(0)=1 taking h=0.2.			
	OR	COD		103.5
4	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by	CO3	L5	12M
	(i) By Trapezoidal rule and Simpson's $\frac{1}{3}$ rule.			
	(:) II: 6: , 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	(ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.			
	UNIT-III			
5	a Find the Laplace transform of $f(t) = \cosh at \sin bt$.	CO4	L3	6M
	b Find $L^{-1}\left(\frac{s^2}{(s^2+4)(s^2+25)}\right)$ using Convolution theorem.	CO4	L3	6M
	((3+4)(3+23)) OR			
6	a Find the Laplace transform of $\frac{1-\cos at}{t}$	CO4	L3	6M
	b Find $L^{-1}\left\{s\log\left(\frac{s-1}{s+1}\right)\right\}$			
	$\frac{1}{3} \log \left(\frac{1}{3+1} \right)$	CO4	1.3	6M

Q.P. Code: 20HS0834	R	20	
UNIT-IV			
a Using Laplace transform method to solve $y^{1} - y = t$, $y(0) = 1$	CO5	L3	6M
b Obtain the Fourier series expansion of $f(x) = (x - x^2)$ in the interval $[-\pi, \pi]$.	CO5	L2	6M
Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \dots - \frac{\pi^2}{12}$.			
Use Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1$, $y^1(0) = 1$	CO5	L3	12M
ON TENNERAL MENTAL OF THE PROPERTY OF THE PROP			
Applying Fourier integral theorem, show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^2 + 2}{\lambda^4 + 4} \cos \lambda x d\lambda$.	CO6	L3	6M

7

8

9

b Prove that $F[x^n f(x)] = (-i)^n \frac{d^n}{dp^n} [F(p)]$

OR

CO6

6M

10 Find the Fourier sine and cosine transforms of $f(x)=e^{-ax}$, a>0 and hence CO6 L1 12M deduce the integrals (i) $\int_0^\infty \frac{p \sin px}{a^2+p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2+p^2} dp$

*** END ***